Shoulder Hemiarthroplasty with Nonprosthetic Glenoid Arthroplasty

The Ream-and-Run Procedure

Frederick A. Matsen III, MD
Bradley C. Carofino, MD
Andrew Green, MD
Samer S. Hasan, MD, PhD
Jason E. Hsu, MD
Mark D. Lazarus, MD
Matthew D. McElvany, MD, MAS
Michael J. Moskal, MD
I. Moby Parsons IV, MD
Matthew D. Saltzman, MD
Winston J. Warme, MD

Investigation performed at the Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington

Abstract

- Glenoid component wear and loosening are the principal failure modes of anatomic total shoulder arthroplasty (aTSA). The ream-and-run (RnR) procedure is an alternative glenohumeral arthroplasty for patients who wish to avoid the risks and limitations of a prosthetic glenoid component.
- During the RnR procedure, the arthritic glenoid is conservatively reamed to a single concavity, while the prosthetic humeral component and soft tissues are balanced to provide both mobility and stability of the joint.
- The success of the RnR procedure depends on careful patient selection, preoperative education and engagement, optimal surgical technique, targeted rehabilitation, and close postoperative communication between the surgeon and the patient.
- While the RnR procedure allows high levels of shoulder function in most patients, the recovery can be longer and more arduous than with aTSA.
- Patients who have undergone an RnR procedure occasionally require a second closed or open procedure to address refractory shoulder stiffness, infection, or persistent glenoid-sided pain. These second procedures are more common after the RnR than with aTSA.

Wear and loosening of the glenoid component are the principal causes of failure after anatomic total shoulder arthroplasty (aTSA), especially in young and active patients. The ream-and-run (RnR) procedure is a method for managing glenohumeral arthritis in patients who wish to avoid the risks of implant wear and loosening as well as surgeon-imposed activity limitations on heavy or impact loading that are associated with a prosthetic glenoid component. This article reflects the experience of 11 shoulder surgeons from across the United States who currently employ the RnR procedure in their practices. These surgeons formed a study group that focuses on enhancing the understanding, technique, and outcomes of the procedure. The RnR glenohumeral arthroplasty differs from a humeral hemiarthroplasty (HHA), which is performed without attention to the arthritic

Disclosure: The Disclosure of Potential Conflicts of Interest forms are provided with the online version of the article (http://links.lww.com/JBJSREV/A738).

This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.
It differs from aTSA in that it enables patients to safely pursue substantially greater levels of shoulder function than those recommended after aTSA. However, the recovery from the RnR procedure may be longer and more challenging. The collective experience derived from this study group demonstrates the unique aspects of the RnR, emphasizing the importance of a holistic approach spanning the entire episode of care.

Rationale

Normal shoulder function is a balance of mobility and stability (Video 1). Dynamic stability of the glenohumeral joint depends largely on concavity compression, (i.e., the containment of the forces acting on the humeral head within the glenoid concavity)\(^{17,18}\). In glenohumeral osteoarthritis, the stabilizing monoconcave shape of the normal glenoid surface is altered by pathologic wear, becoming flattened or biconcave with increased glenoid retroversion and humeral head decentering on the glenoid face\(^{19,20}\). These changes compromise the stabilizing function of the glenoid and diminish the contact area for glenohumeral load distribution (Fig. 1-A). Whereas an isolated HHA does not address these pathologic changes in glenoid surface shape, the RnR provides a method for managing the arthritic glenoid by reaming it to a single stabilizing concavity and balancing the soft tissues to center the prosthetic humeral head on the reamed glenoid\(^2\) (Fig. 1-B).

Considerations in Patient Selection

Because the recovery after an RnR can be longer and more challenging, it is important that patients considering this procedure are well-informed, resilient, and highly motivated\(^{22-25}\). Patients must understand that the procedure sets the stage for them to pursue their desired level of function, but a good recovery requires them to fully commit to the process. Those seeking the quickest path to a comfortable shoulder with an easier rehabilitation may be better served by aTSA.

While younger, active patients are often ideal candidates for the RnR procedure, age is not a major consideration; the RnR is successfully performed in individuals from 20 to 80 years of age who desire high levels of activity. Carefully selected female patients can do well after the RnR procedure; however, on average, the outcomes in women are not as good as those in men\(^{26,27}\). Other patient factors that are associated with suboptimal outcomes include narcotic use, tobacco use, depression, medical comorbidities, cardiovascular conditions that require anticoagulants, dystonic conditions such as Parkinson disease, prior surgery, and Workers’ Compensation insurance.

Glenoid wear, retroversion, and biconcavity, as well as posterior decentering of the humeral head on the glenoid, are not contraindications for the RnR procedure. Because these features are associated with higher glenoid component failure rates after aTSA\(^{28,29}\), their presence may actually favor the RnR\(^2\). Shoulders with a compromised rotator cuff tend to have inferior results after the RnR procedure. Patients with weakened glenoid bone from inflammatory arthropathy, osteoporosis, or chondrolysis may fail to develop a durable articular surface after glenoid reaming and may be better managed with aTSA.

Setting the Patient Up for Success

The process of optimizing a patient’s outcome after the RnR procedure must begin well before surgery. Critical to success is establishing a close surgeon-patient relationship that provides assurance, coaching, structured support, and ready access to the surgeon’s team throughout a potentially protracted recovery. Printed handouts
and web-based information describing the procedure and recovery program can provide important supportive resources. Prior to surgery, instruction regarding the necessary exercises provides a platform for rehabilitation after the procedure.

Patients must embrace the importance of being optimistic, healthy, well-nourished, and well-hydrated, with no exposure to nicotine for 3 months prior to surgery. Individuals with diabetes should have excellent control of their blood glucose levels. Anti-inflammatory drugs and anticoagulants should be managed to minimize the risk of a postoperative wound hematoma.

Informed consent should include a frank discussion of the fact that the RnR is an elective procedure; alternatives include nonoperative management and aTSA; there is a risk of stiffness, persistent pain, infection, and a recovery process that may extend up to 2 years; and manipulation under anesthesia (MUA) or revision surgery may be needed postoperatively and that second procedures are more common after the RnR than with aTSA. Patients are provided with published data as well as the surgeon’s personal experience with the RnR procedure.

Preoperative decentering can be assessed on the so-called “axillary truth view” radiograph or the computed tomography (CT) scan as the percent of the humeral head that lies behind the perpendicular bisector of a line segment connecting the anterior and posterior edges of the glenoid (Fig. 2). Often, posterior decentering is more apparent on an axillary view that is made with the arm in a functional position of elevation rather than on a CT scan that is made with the arm at the side. Preoperative imaging may underestimate the posterior instability that is subsequently observed at surgery after osteophytes have been removed and soft-tissue adhesions and contractures have been released. In the past, concern for posterior instability after the RnR procedure led surgeons to use thicker humeral head components with overstuffing of the joint, which resulted in limitation of the range of motion. Currently, however, surgeons are gaining confidence in methods for managing potential instability without compromising range of motion.

Perioperative Management

Patients desiring the RnR procedure have specific demographics that are associated with an increased risk of Cutibacterium periprosthetic joint infection (CPJI) (i.e., young, healthy men with low American Society of Anesthesiologists [ASA] scores, low body mass index, supplemental testosterone use, and prior shoulder surgery) . These patients have higher levels of Cutibacterium in their dermal pilosebaceous glands, which is a potential source of wound and implant contamination .

No preoperative washes or surgical skin preparation can eliminate Cutibacterium from these dermal glands or prevent it from entering the surgical field . Approaches for mitigating the risk of CPJI may include preoperative intravenous ceftriaxone and/or vancomycin, thorough skin preparation, the discarding of instruments that have been used in the superficial tissues, frequent wound irrigation, the use of povidone-iodine or other antiseptic lavage, preventing contact between the humeral implants and the skin, and topical antibiotics. In high-risk patients, a course of postoperative oral antibiotics (e.g., a 3-week course of doxycycline or amoxicillin-clavulanate) may be considered.

Postoperative hematomas can increase discomfort and interfere with motion. Bleeding can be minimized by meticulous hemostasis, intravenous or topical tranexamic acid, and topical thrombin. Drains are usually avoided because they can provide an avenue for introduction of Cutibacterium from the skin into the joint.

Surgical Technique

The rationale for the RnR procedure and the surgical technique is demonstrated in 2 videos (Video 1 and the video accessed through the Video Journal of Orthopaedics).

Subscapularis Management

Careful takedown, release, and secure repair of the subscapularis tendon is essential in the RnR procedure because early motion exercises must be started before healing is complete and a secure subscapularis is important for high levels of shoulder function. Whether a peel, a tenotomy, or a lesser tuberosity osteotomy is used, the repair must be carefully examined and noted to be solid before wound closure.

Glenoid Exposure

Glenoid exposure may be challenging in patients who undergo the RnR procedure, especially if they are muscular, have a retroverted biconcave glenoid, and/or have had prior surgery. Exposure can be optimized by:

1. Locating the skin incision over the deltopectoral interval starting near the clavicle;
1. Releasing the anterior and inferior capsule from the glenoid and the labrum. Some surgeons preserve the labrum to optimize load-sharing and stability;
2. Flexing the shoulder to relax the deltoid and pectoralis muscles;
3. If necessary, removing bone from the inferior one-third of the lesser tuberosity area, providing reamer access without compromising subscapularis repair to the superior two-thirds of the lesser tuberosity; and
4. Removing retractors during reaming so that they do not interfere with reamer positioning.

Glenoid Reaming
The objective of glenoid reaming is to create a single concavity with a congruent surface that helps recenter the humeral head and optimizes load distribution on the glenoid. The preservation of subchondral bone is critical to prevent additional glenoid wear; therefore, surgeons are inclined to accept glenoid retroversion rather than reaming aggressively in an attempt to modify version.

The essential elements of reaming are listed below.
1. Select a reamer with a diameter of curvature (DOC) that is slightly greater than that of the humeral head (a diameter mismatch of 2 mm is commonly used [e.g., a 58-mm DOC reamer with a 56-mm DOC humeral head or a 54-mm DOC reamer with a 52-mm DOC humeral head]). The outer circumference of the reamer needs to be large enough so that the available glenoid surface can be completely reamed. Appropriately sized reamers are not part of a standard total shoulder arthroplasty set.
2. Remove any residual glenoid articular cartilage, typically on the anterior glenoid surface.
3. Burr down the osseous ridge between the anterior and posterior glenoid concavities.
4. Identify the starting point for reamer positioning, which is usually at the center of the glenoid.
5. Drill a hole for a nubbed reamer (or place a guidewire) in the glenoid center.
6. Use 1 of 2 methods to orient the glenoid reamer:
 a. Insert a nubbed reamer into a hole at the glenoid center and iteratively adjust the orientation of the reamer to create a single concavity while removing the least amount of bone (the end point is when the reamer contacts the entire glenoid surface).
 b. Insert a cannulated reamer over a guidewire that is inserted at an angle that is determined by 3-dimensional preoperative planning.
7. Burr any remaining prominences or ream lines.
8. Ensure that the reamed surface is smooth and monoconcaave.
9. Additional options include:
 a. Harvest a plug of bone from the resected humeral head

Figs. 3-A, 3-B, and 3-C The 40-50-60 guidelines. An RnR arthroplasty is well balanced if the shoulder allows at least 150° of passive elevation and if (A) the shoulder allows 40° of external rotation with the subscapularis approximated to its reattachment site, (B) the humeral head can be manually translated by 50% of the glenoid width, and (C) the abducted arm can be internally rotated 60°. (Reproduced, with permission, from: Rockwood C, Wirth M, Fehringer E. Rockwood and Matsen’s The Shoulder. Matsen F, Sperling J, Lippitt S, editors. 5th ed. Elsevier; 2016.)
with a trephine and, after reaming is complete, insert it flush into the hole that was used to center the glenoid reamer.

b. Drill multiple holes in the sclerotic glenoid surface.

The Humeral Component

The RnR procedure requires secure humeral component fixation with maximal bone preservation and minimal risk of fracture. A common technique is to use a smooth, relatively narrow standard-length stem that is fixed with impaction autografting. Without removing diaphyseal endosteal bone, this approach provides a low canal-filling ratio with minimal risk of stress-shielding, facilitates stem positioning, and leaves open the possibility of plate fixation if a periprosthetic fracture occurs. Other humeral implant options include a short stem that is press-fit into the proximal canal with or without porous ingrowth surfaces or a stemless humeral component. The former avoids the diaphysis but may be associated with increased risk of stress-shielding, varus or valgus stem malpositioning, and difficulties in treating a periprosthetic fracture. The latter avoids the canal and may facilitate optimal head placement on the cut surface but may risk a non-anatomic humeral head cut and suboptimal fixation if the metaphyseal bone is soft.

The prosthetic humeral head has 3 important dimensions: the DOC, the thickness, and the presence or absence of an offset (eccentricity) that can be used to modify the anteroposterior position of the articular surface. The DOC affects the glenohumeral contact area, the thickness affects the soft-tissue balance, and the offset can be used to manage posterior instability without over-stuffing of the joint. Some surgeons prioritize restoring glenohumeral anatomy, while others consider increasing the DOC of the prosthetic humeral head, decreasing the thickness of the head, and using anteriorly eccentric components to optimize the balance between mobility and stability (see Appendix, Case 1).

Regardless of the selection of the prosthesis dimensions and fixation method, the prosthetic head should remain centered on the reamed glenoid throughout the range of motion, including at >150° of flexion. The “40-50-60” rules are helpful in establishing proper balance of the arthroplasty: the mobilized subscapularis tendon should reach the insertion site with the arm in 40° of external rotation, the trial humeral head should be posteriorly translatable for 50% of the width of the glenoid, and there should be 60° of internal rotation with the arm abducted to 90° (Fig. 3). It is important to check for unwanted contact between the proximal humeral bone and the glenoid when the arm is adducted or externally rotated.

Avoiding Posterior Decentering

Stability of the arthroplasty is optimized by reaming to a single glenoid concavity and by soft-tissue balancing. Correcting retroversion does not appear to be necessary to achieve stability of the RnR. The prosthetic head must not be seated superiorly in relation to the neck cut since that positioning may increase the risk of posterior instability when the arm is flexed. If there is excessive posterior translation of the humeral head, an anteriorly eccentric head component may be preferable to increasing the component’s thickness (Fig. 1-B).

Once the definitive humeral component is inserted, the 40-50-60 tests are repeated. If the balance of the shoulder is appropriate, the subscapularis tendon is repaired. If excessive posterior translation remains at this point in the procedure, a rotator interval plication (approximating the superior edge of the subscapularis to the anterior edge of the supraspinatus, starting laterally (red arrow). Increasing the number of medial sutures increases the tightness of the shoulder. Because this is a powerful technique, surgeons need to avoid stiffness from overtightening. (Reproduced, with permission, from: Rockwood C, Wirth M, Fehringer E. Rockwood’s The Shoulder. Matsen F, Sperling J, Lippitt S, editors. 5th ed. Elsevier; 2016.)

![Fig. 4](https://example.com/fig4.png)

Fig. 4
The rotator interval plication. If the arthroplasty demonstrates instability after the subscapularis has been repaired, stability can be achieved by approximating the superior edge of the subscapularis to the anterior edge of the supraspinatus. The rotator interval plication is performed in the supine position.

Rehabilitation after the RnR is more demanding than that after a TSA. Range-of-motion exercises are started on the day of surgery, with a focus on achieving the desired motion before the patient leaves the medical center. For the first 6 weeks, the priority is to maintain >150° of assisted elevation while avoiding excessive external forces on the shoulder. Active motion is started as tolerated, with the goal of achieving full elevation by 6 weeks. Strengthening is started in the late stages of rehabilitation, with the focus on the rotator cuff muscles. The patient is usually able to return to work and light physical activity at 3 months.

Rehabilitation and Recovery

Rehabilitation after the RnR is more demanding than that after a TSA. Range-of-motion exercises are started on the day of surgery, with a focus on achieving the desired motion before the patient leaves the medical center. For the first 6 weeks, the priority is to maintain >150° of assisted elevation while avoiding excessive external forces on the shoulder. Active motion is started as tolerated, with the goal of achieving full elevation by 6 weeks. Strengthening is started in the late stages of rehabilitation, with the focus on the rotator cuff muscles. The patient is usually able to return to work and light physical activity at 3 months.
rotation stretching in order to protect the subscapularis repair. Three exercises are useful in this regard: the supine stretch, the pulley stretch, and the forward-lean table slide. The latter 2 are particularly useful for patients with a compromised contralateral shoulder.

At 2 weeks postoperatively, stretching in abduction, internal rotation, and cross-body adduction is added. During the early phases of rehabilitation, patients may experience a sensation of minor translation during the range-of-motion exercises. This is managed by reassurance and external rotation isometrics.

At 6 weeks postoperatively, gentle progressive strengthening is started using the 2-hand supine press-up while holding a yardstick or a dowel in both hands. This is transitioned to a 1-hand press-up with a 1-lb (0.45-kg) weight. As this becomes easier, the patients adjust their position so that their chest is progressively inclined to

Fig. 5
Figs. 5-A through 5-E The progressive press-up exercise. An effective and safe rehabilitation program for regaining strength after an RnR procedure is typically started at 6 weeks after surgery. Fig. 5-A The program starts with an assisted press-up with the hands close together, with the unoperated arm providing the necessary assistance. Fig. 5-B As the operated shoulder gets stronger, the hands are increasingly separated. Fig. 5-C The next step is the single-hand supine press-up using a light weight. When this exercise can be repeated comfortably, the chest is progressively inclined (Fig. 5-D) until the exercise can be performed in the standing position (Fig. 5-E). In each exercise, the scapula is protracted to help retrain the scapular stabilizers (the “press plus”). Twenty comfortable repetitions need to be achieved before advancing to the next level (the rule of 20). (Reproduced, with permission, from: Rockwood C, Wirth M, Fehringer E. Rockwood and Matsen’s The Shoulder. Matsen F, Sperling J, Lippitt S, editors. 5th ed. Elsevier; 2016.)
a more vertical position (Fig. 5). All of the strengthening exercises are performed with a high number of repetitions (>20) and only to the extent that permits comfort. At this time, gentle low rows, easy pull-downs, and gentle water exercises can be started as tolerated.

It should be noted that some patients experience substantial weakness in the first 2 to 3 months following an RnR procedure. While the cause of this weakness is not clear, it almost always resolves with gently progressive strengthening exercises. At 3 months, general strengthening is started with a focus on the scapular motor control and progressive rotator cuff strengthening. Full recovery of motion and strength requires persistent efforts over the course of a year and beyond.

The Issue of Glenoid Wear
When glenohumeral osteoarthritis is treated by hemiarthroplasty alone, the arthritic glenoid is at risk for progressive erosion, particularly in shoulders with a posterior biconcavity. When an isolated humeral head replacement is used in a shoulder with a biconcavity, the joint pressure (joint force/surface area) remains concentrated on the pathologic posterior concavity, favoring ongoing wear46,47. By contrast, in the RnR procedure, the biconcave glenoid is converted to a single concentric concavity so that the joint forces are distributed over the maximal area, resulting in lower joint pressure.

In most cases, glenoid wear after an RnR procedure is small (averaging <1 mm/year)48-50. While some medialization may occur early on, wear appears to stop once the reamed glenoid has had the opportunity to heal with a durable sclerotic base supporting the joint surface51. Factors that may increase the risk of wear include diagnoses that are associated with soft glenoid bone (rheumatoid arthritis, chondrolysis, osteoporosis, steroid arthropathy, and postinfectious arthropathy), valgus positioning of the humeral component52, inadequate reaming that does not fully address the biconcavity, and excessive reaming into the subchondral bone51. Progressive medial wear after an RnR procedure may be a sign of CPJl. Superior wear may be associated with rotator cuff deficiency.

The Issue of Postoperative Stiffness
Factors predisposing to stiffness include preoperative stiffness or instability, diabetes, Parkinson disease, prior surgery (e.g., rotator cuff, SLAP [superior labral anterior-posterior] tears, or instability repair), large shoulder musculature, insufficient preoperative education for the patient by the surgeon, and low patient motivation and resilience25.

At the time of surgery, the risk of postoperative stiffness is reduced by capsular release, subscapularis mobilization, avoiding overstuffing of the joint with too large a humeral head component, avoiding varus positioning of the component stem, and ensuring that the 40-50-60 rules have been met32. A lateral photograph of the patient immediately after surgery with the arm in full flexion can be used to demonstrate that a substantial range of motion has been achieved.
When the patient has recovered from anesthesia, the surgeon and the therapist implement patient-conducted stretching, motivating the patient by assuring that this will not damage the repair and that the motion that is achieved on the evening of surgery is an approximation of the end result.

After discharge, the surgeon and the patient reestablish the rehabilitation plan, including a home program with or without supervised physical therapy and with ongoing support and close monitoring of the range of flexion. For patients who live at a distance from the medical center, the surgeon can monitor progress with sequential lateral photographs or videos of the shoulder taken during assisted supine elevation that are sent by email. An MUA with temporary muscle paralysis is considered at 6 to 12 weeks for shoulders that are unable to maintain the range of motion that had been achieved at surgery. The MUA consists of gentle flexion in internal rotation, abduction, and cross-body adduction, avoiding stretching in rotation that might jeopardize the subscapularis repair.

There are 2 types of refractory shoulder stiffness seen after an RnR. In type 1, the shoulder has never achieved the desired motion. In type 2, the shoulder had achieved an excellent initial range of motion but had become stiff and painful after a “honeymoon” period of good function that lasted for months or even years after surgery.

The common causes of type-1 stiffness are overstuffing of the joint, excessive rotator interval plication, or lack of adequate rehabilitation. Treatments to consider include more aggressive physical therapy; MUA; arthroscopic capsular release; or open revision with capsular release, subscapularis mobilization, and re-repair; as well as downsizing of the humeral...
component with or without re-reaming of the glenoid. Conversion to aTSA is an option if the patient does not wish to continue to pursue the RnR.

CPJI is an important cause of type-2 stiffness. Concern about CPJI is heightened if radiographs show glenoid osteopenia rather than the expected sclerotic remodeling of the joint surface and if there is osteolysis of the proximal medial humerus. Blood cell counts, erythrocyte sedimentation rate, C-reactive protein level, and joint aspiration have limited utility in excluding the possibility of CPJI. In this circumstance, surgeons may consider a single-stage prosthesis exchange after vigorous irrigation and debridement, followed by an initial course of intravenous antibiotics that are modified according to the results of the intraoperative culture specimens54,55.

Outcomes

Patients and surgeons arrive at the decision to perform an RnR after careful consideration of the goals and characteristics of the patient as well as the pathoanatomy of the shoulder. The selection process differs among surgeons: some may choose only “perfect” candidates, whereas others may offer the RnR procedure, believing that no other procedure should be considered for the patient and the pathology (e.g., a severe type-B2 glenoid in a highly active patient). As a result, the outcome of the procedure may be strongly influenced by the status of the patient and the shoulder prior to surgery: patients with higher levels of function before surgery are more likely to be satisfied with their outcomes postoperatively26. Many patients having the RnR procedure have levels of postoperative function that are equal to or better than those for aTSA16,23,26,27,30,34,38,48,50,51,56-64 (Fig. 6, Table I). Three example cases are presented in the Appendix (Case 1, Case 2, and Case 3).

Factors that are associated with an increased risk of poor outcomes include poor preoperative function, prior shoulder surgery, narcotic use, female sex, and smoking. Older patients who undergo the RnR procedure appear to fare equally well in comparison with younger patients (Fig. 7). The comfort and function of patients struggling with stiffness after the RnR procedure often can be restored by MUA or downsizing the thickness of the humeral head combined with soft-tissue releases, yielding a satisfactory end result. A substantial number of RnR failures appear to be due to CPJI, which is of particular concern in the RnR demographic. In most cases, CPJI can be effectively managed with a single-stage exchange54.

While there was a relatively high degree of consensus among the 11 surgeons who are represented in this review article, there was also diversity of opinion on some of the critical aspects of the RnR procedure (see Appendix, Consensus Table). Much remains to be learned about how the outcomes of the RnR procedure can be optimized. Below are some of the major questions that need to be addressed:

1. What is the best way to assess the long-term outcome of the RnR procedure?
2. Can the risk of failure from postoperative stiffness be reduced by accepting greater joint laxity at the time of the RnR procedure?
3. How does the long-term durability of the RnR procedure compare with aTSA?
4. How do the radiographic changes after the RnR procedure (e.g.,...
formation of a soft-tissue layer, extent of glenoid wear, and glenoid bone density) correlate with the outcome?
5. Will current methods of prophylaxis against CPJI result in lower rates of infection and better long-term outcomes?
6. How can we minimize failures of the RnR procedure that are due to a lack of understanding of or improper adherence to the established principles and techniques?

Appendix
Supporting material provided by the authors is posted with the online version of this article as a data supplement at jbjs.org (http://links.lww.com/BJJSREV/A739).

NOTE: The authors thank Susan DeBartolo (University of Washington Department of Orthopaedics and Sports Medicine) for her editorial work on the manuscript and Steven B. Lippitt (Akron General Orthopaedics) for his artwork in the figures. Thanks also to the other senior authors who have contributed to our knowledge on the read-and-run procedure, including Jeremy Somerson, Brian Gilmer, Joseph Lynch, Jeremiah Clinton, Anthony Romeo, and Gerald Williams. Finally, we thank Sarah Jackins, RPT, for her decades of work in pursuit of the optimal rehabilitation program for individuals having the read-and-run procedure and for sharing her knowledge with all of us.

Frederick A. Matsen III, MD,1
Bradley C. Carofino, MD2
Andrew Green, MD3
Samer S. Hasan, MD, PhD4
Jason E. Hsu, MD5
Mark D. Lazarus, MD6
Matthew D. McElvany, MD, MAS7
Michael J. Moskal, MD8
I. Moby Parsons IV, MD9
Matthew D. Saltzman, MD9
Winston J. Warme, MD9
1Department of Orthopaedics and Sports Medicine, University of Washington, Seattle, Washington
2Atlantic Orthopaedic Specialists, Virginia Beach, Virginia
3Department of Orthopaedic Surgery, Warren Alpert Medical School of Brown University, East Providence, Rhode Island
4Mercy Health-Cincinnati SportsMedicine and Orthopaedic Center, Cincinnati, Ohio
5Department of Orthopaedics, The Rothman Orthopaedic Institute, Philadelphia, Pennsylvania
6Department of Orthopaedics, The Permanente Medical Group, Santa Rosa, California
7Shoulder & Elbow Center, P.S.C., Sellersburg, Indiana
8The Knee, Hip and Shoulder Center, Portsmouth, New Hampshire
9Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois

Email for corresponding author: matsen@uw.edu

References
52. Hackett DJ Jr, Hsu JE, Matsen FA 3rd. Primary shoulder hemiarthroplasty: what can be learned from 359 cases that were surgically revised? Clin Orthop Relat Res. 2018 May;476(5):1031-40.

